Abstract

The hot gas path section components of land based turbines require materials with superior mechanical properties and good hot corrosion and oxidation resistance. These components are generally coated with either a diffusion coating (aluminide or platinum aluminide) or with an overlay coating (MCrAlY) to provide additional hot corrosion and/or oxidation protection. These coatings degrade due to inward and outward diffusion of elements during service. Outward diffusion of aluminum results in formation of a protective oxide layer on the surface. When the protective oxide spalls, aluminum in the coating diffuses out to reform the oxide layer. Accelerated oxidation and failure of coating occur when the Al content in the coating is insufficient to reform a continuous alumina film. This paper describes development of a coating life prediction model that accounts for both oxidation and oxide spallation under thermal mechanical loading, as well as diffusion of elements that dictate the end of useful life. Cyclic oxidation data for aluminide and platinum aluminide coatings were generated to determine model constants. Applications of this model for predicting cyclic oxidation life of coated materials are demonstrated. Work is underway to develop additional material data and to qualify the model for determining actual blade and vane coating refurbishment intervals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call