Abstract

Drug coated balloons (DCB) are becoming the standard-care treatment for peripheral arterial disease (PAD). DCB use excipients to transfer and retain anti-proliferative drugs, such as paclitaxel. Excipients thus play a vital role in the design and function of DCB, however methods to coat balloons with excipients and anti-proliferative drugs remain unknown. The goal of this study was to thus develop an approach to coat and evaluate DCB for various excipients. An air sprayer method was developed to deposit paclitaxel and various excipients onto non-coated commercially available angioplasty balloons. The coating of the angioplasty balloons was evaluated for drug deposition and coating efficiency using high performance liquid chromatography tandem mass spectrometry. Drug transfer and retention of the coated angioplasty balloons into arterial segments were evaluated ex vivo using harvested pig arteries in a pulsatile flow bioreactor. The air sprayer method successfully delivered varying excipients including bovine serum albumin (BSA), urea and iohexol. The air spray method was configured to coat four angioplasty balloons simultaneously with paclitaxel and iohexol with an average paclitaxel load of 4.0 ± 0.70µg/mm2. The intra-day (within) and inter-day (between) coating precisions, defined as relative standard deviation (RSD), was 17.2 and 15.5%, respectively. Ex vivo deployment of iohexol-paclitaxel DCB yielded an arterial paclitaxel concentration of 123.4 ± 44.68ng/mg (n = 3) at 1h, 126.7 ± 25.27ng/mg (n = 3) at 1day, and 12.9 ± 12.88ng/mg (n = 3) at 7days. This work provides proof-of-concept of a quick, inexpensive approach to coat commercially available angioplasty balloons with paclitaxel and various excipients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call