Abstract

This investigation aims to highlight the applicability of a potent eco-friendly developed composite film to combat the Escherichia coli biofilm formed in a model food system. ZnO nanoparticles (NPs) synthesized using green methods were anchored on the surface of cellulose nanocrystals (CNCs). Subsequently, nano-chitosan (NCh) solutions were used to disperse the synthesized nanoparticles and cinnamon essential oil (CEO). These solutions, containing various concentrations of CNC@ZnO NPs and CEO, were sequentially coated onto cellulosic papers to inhibit Escherichia coli biofilms on grey zucchini slices. Six films were developed, and Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, biodegradation, and mechanical properties were assessed. The film containing 5 % nano-emulsified CEO + 3 % dispersed CNC@ZnO nano-hybrid in an NCh solution was selected for further testing since it exhibited the largest zone of inhibition (34.32 mm) against E. coli and the highest anti-biofilm activity on biofilms developed on glass surfaces. The efficacy of the film against biofilms on zucchini surfaces was temperature-dependent. During 60 h, the selected film resulted in log reductions of approximately 4.5 logs, 2.85 logs, and 1.57 logs at 10 °C, 25 °C, and 37 °C, respectively. Applying the selected film onto zucchini surfaces containing biofilm structures leads to the disappearance of the distinctive three-dimensional biofilm framework. This innovative anti-biofilm film offers considerable potential in combatting biofilm issues on food surfaces. The film also preserved the sensory quality of zucchini evaluated for up to 60 days.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call