Abstract

Abstract The dispersion relation is derived for long coastal trapped waves of sub‐inertial frequency that propagate along a single‐step continental shelf in a two‐layer fluid. When the internal (Rossby) deformation radius is smaller than the shelf width, we show that the dispersion relation can be factored exactly, giving two possible modes: i. an internal Kelvin wave modified by topography; ii. a continental shelf wave modified by the stratification. A detailed discussion of the eigen‐functions associated with each of these modes is presented. Then the shelf wave dispersion relation is plotted for parameters applicable to the Oregon‐Washington coast. Theoretical values for the periods and wavelengths predicted from these plots are shown to agree favorably with observed values for this region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.