Abstract

Estuaries are productive, heterogeneous, and dynamic systems that support a diverse array of fishes. However, our understanding of how presumably stenohaline fishes persist in such transitional systems is limited, particularly for most fishes in tidal freshwater areas. We conducted a laboratory experiment and field investigation along an upstream–downstream salinity gradient in the Mobile–Tensaw River Delta, Alabama, USA, to test the hypothesis that age-0 largemouth bass ( Micropterus salmoides ), an economically and ecologically important freshwater species that uses low-salinity habitats in many North American estuaries, move to avoid seasonal salinity increases. To do so, we quantified changes in otolith microchemistry (e.g., Sr to Ca ratios) along the major growth axis of otoliths in both field-collected and laboratory-reared individuals. Our experiment revealed a 21-day lag time between initial salinity changes and Sr:Caotolith saturation but that Sr:Caotolith in field-collected fish reflect changes in ambient salinity. Further, contrary to our expectation, otolith microchemical analyses from spring- and fall-collected age-0 largemouth bass indicate no avoidance of increased salinity, which has potential implications for their growth and recruitment in these systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call