Abstract

A better understanding of blue carbon (BC) sequestration can not only contribute to a better elucidation of global carbon cycle processes but can also lay the foundation for the incorporation of BC ecosystems into regional and global carbon offset schemes. In this study, the surface soils of seven plots along a landward to seaward distance gradient were analyzed for the concentrations and stocks of soil organic carbon (SOC), soil inorganic carbon (SIC), dissolved organic carbon (DOC), and dissolved inorganic carbon (DIC), as well as soil physical (bulk density, texture, moisture), chemical (pH, electrical conductivity), and microbiological (phospholipid fatty acid) properties in the coastal wetlands. Correlation, variation partition and random forest (RF) analyses were used to identify key variables correlating with BC fraction distribution patterns. The results suggested that SIC, DIC, and DOC, exhibited similar landward-increasing trends but the driving factors were distinct from each other. Based on correlation and RF analysis, both SIC and DIC were closely related to soil moisture and clay contents, but microbial indicators of arbuscular mycorrhizal fungi and actinomycete, were found to be associated with SIC, and abiotic properties played less important but still substantial roles in predicting DIC dynamics. In contrast with the other three investigated BC fractions, SOC showed a slight tendency toward enrichment in the seaward direction, and SIC was identified as the main driving factor. DOC showed no significant correlations with the other BC fractions, and its variation could not be explained well by the selected edaphic parameters. The soils in the YRD's tidal Suaeda salsa salt marshes showed a significant negative coupled SOC–SIC correlation, which was potentially related to divergent sedimentary processes and potential biotransformation between SOC and SIC. These results highlight the importance of integrating multiple BC fractions and their interactions into attempts to explore key mechanisms of BC cycling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call