Abstract
The southeastern Bay of Biscay has been described as a “dead end” for floating marine litter, often accumulating along small-scale linear streaks. Coastal Current Convergence Structures (CCS), often associated with vertical motions at river plume edges, estuarine fronts, or other physical processes, can be at the origin of the accumulation. Understanding the formation of CCS and their role in the transport of marine litter is essential to better quantify and to help mitigate marine litter pollution. The Lagrangian framework, used to estimate the absolute dispersion, and the finite-size Lyapunov exponents (FSLE), have proved very effective for identifying CCS in the current velocity field. However, the quality of CCS identification depends strongly on the Eulerian fields. Two surface current velocity data sets were used in the analysis: the remotely sensed velocities from the EuskOOS High-Frequency Radar (HFR) network and velocities from three-dimensional model outputs. They were complemented by drifting buoy velocity measurements. An optimization method, involving the fusion of drifting buoys and HFR velocities is proposed to better reconstruct the fine-scale structure of the current velocity field. Merging these two sources of velocity data reduced the mean Lagrangian error and the Root Mean Square Error (RMSE) by 50 % and 30 % respectively, significantly improving velocity reconstruction. FSLE ridgelines obtained from the Lagrangian analysis of optimized velocities were compared with remotely sensed concentrations of Chlorophyll-a. It was shown that ridgelines control the spatial distribution of phytoplankton. They fundamentally represent the CCS which can potentially affect marine litter aggregation. Analysis of the absolute dispersion revealed large stirring in the alongshore direction which was also confirmed by spatial distribution of FSLE ridgelines. The alignment between FSLE ridgelines and patterns of high Chlorophyll-a concentration was observed, often determining the limits of river plume expansion in the study area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.