Abstract

Fluorescent nanostructures have been widely applied to biomedical researches and clinical diagnosis such as biolabeling/imaging/sensing and have even acted as therapy reagents. Peptide-based fluorescent nanostructures attract recent interest from biomedical researchers. Inspired by the natural existence of GHK-Cu complex with a growth factor-like effect in human blood, here we have developed a novel approach for designing nanosensors through the co-assembling of two kinds of biomolecules. By making best use of both π-π stacking between carbon rings and the easy-oxidation property of an important transmitter molecule, dopamine (DA), we successfully built up a supersensitive and robust fluorescent pH nanosensor by co-assembling oxidized DA (DAox ) with a tripeptide GHK. The GHK-DAox nanostructures have a quantum yield of 20.82%, which might be the brightest one among all the current co-assembling structures merely through unmodified biomolecules. We envision this approach could open a new avenue for not only hybrid nanostructure construction, but also may inspire the bioengineering of in vivo luminescent probes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.