Abstract

In speech, the phenomenon of coarticulation (differentiation of phoneme production depending on the preceding or following phonemes) suggests an organization of movement sequences that is not strictly serial. In the skeletal motor system, however, evidence for comparable fluency has been lacking. Thus the present study was designed to quantify coarticulation in the hand movement sequences of sign language interpreters engaged in fingerspelling. Records of 17 measured joint angles were subjected to discriminant and correlation analyses to determine to what extent and in what manner the hand shape for a particular letter was influenced by the hand shapes for the preceding or the following letters. Substantial evidence of coarticulation was found, revealing both forward and reverse influences across letters. These influences could be further categorized as assimilation (tending to reduce the differences between sequential hand shapes) or dissimilation (tending to emphasize the differences between sequential hand shapes). The proximal interphalangeal (PIP) joints of the index and middle fingers tended to show dissimilation, whereas at the same time (i.e., during the spelling of the same letters) the joints of the wrist and thumb tended to show assimilation. The index and middle finger PIP joints have been shown previously to be among the most important joints for computer recognition of the 26 letter shapes, and therefore the dissimilation may have served to enhance visual discrimination. The simultaneous occurrence of dissimilation in some joints and assimilation in others demonstrates an unprecedented level of parallel control of individual joint rotations in an essentially serial task.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.