Abstract

Given a polyhedral complex C with convex support, we characterize, by a local codimension-2 condition, polyhedral complexes that coarsen C. The proof of the characterization draws upon a surprising general shortcut for showing that a collection of polyhedra is a polyhedral complex and upon a property of hyperplane arrangements which is equivalent, for Coxeter arrangements, to Tits' solution to the Word Problem. The motivating special case, the case where C is a complete fan, generalizes a result of Morton, Pachter, Shiu, Sturmfels, and Wienand that equates convex rank tests with semigraphoids. The proof of the main result also implies a special case of Tietze's convexity theorem. We also prove oriented matroid versions of our results, obtaining, as a byproduct, an oriented matroid version of Tietze's convexity theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.