Abstract

Segregation structures of granular mixtures in rotating drums represent classical examples of pattern formation in granular material. We investigate the coarsening of axial segregation patterns of slurries in a long horizontally rotating cylinder. The dynamics and the three-dimensional geometry of the segregation structures are analyzed with optical methods and nuclear magnetic resonance imaging. Previous studies have mainly considered global statistical features of the pattern dynamics. In order to get insight into driving mechanisms for the coarsening process, we focus on the details of the dissolution of individual bands. We treat the coarsening as a consequence of interactions of adjacent bands in the pattern, which are determined by their geometrical relations. In addition to initially homogeneous mixtures, which evolve to spontaneously formed patterns, we study the evolution of specially prepared simple initial states. The role of the three-dimensional geometry of the axial core in the dissolution process of segregation bands is demonstrated. Relations between geometry and dynamic processes are established, which may help to find the correct microscopic models for the coarsening mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.