Abstract

The phase separation of isopycnic polystyrene-diethyl malonate solutions has been studied by investigating the microstructure of polymer membranes. Polymer solutions underwent spinodal decomposition and coarsening via a thermally induced phase separation procedure, and supercritical CO 2 extraction was employed to remove solvent, resulting in microporous membranes. At relatively short coarsening times, the coarsening rate of the cell size can be expressed as a power law in time with the exponent increasing with increasing quench depth; for deep quenches, the growth rate has an exponent of 1/3 in agreement with the classic theories for coarsening by Ostwald ripening or coalescence

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.