Abstract

We study the dynamics of domain formation and coarsening in a binary Bose-Einstein condensate that is quenched across a miscible-immiscible phase transition. The late-time evolution of the system is universal and governed by scaling laws for the correlation functions. We numerically determine the scaling forms and extract the critical exponents that describe the growth rate of domain size and autocorrelations. Our data are consistent with inviscid hydrodynamic domain growth, which is governed by a universal dynamical critical exponent of 1/z=0.68(2). In addition, we analyze the effect of domain wall configurations which introduce a nonanalytic term in the short-distance structure of the pair correlation function, leading to a high-momentum "Porod" tail in the static structure factor, which can be measured experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.