Abstract
We study the flocking model introduced by Vicsek et al. (Phys. Rev. Lett. 75, 1226 (1995)) in the "coarsening" regime. At standard self-propulsion speeds, we find two distinct growth laws for the coupled density and velocity fields. The characteristic length scale of the density domains grows as [Formula: see text] (with [Formula: see text] , while the velocity length scale grows much faster, viz., [Formula: see text] (with [Formula: see text] . The spatial fluctuations in the density and velocity fields are studied by calculating the two-point correlation function and the structure factor, which show deviations from the well-known Porod's law. This is a natural consequence of scattering from irregular morphologies that dynamically arise in the system. At large values of the scaled wave vector, the scaled structure factors for the density and velocity fields decay with powers -2.6 and -1.52 , respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.