Abstract

Microstructural evolution during the heat treatment of cement clinker was investigated. Two model specimens, which consisted of faceted tricalcium silicate (C3S) and spherical dicalcium silicate (C2S) grains dispersed in a liquid matrix, were prepared with 5 wt% of large seed particles. The seed particles of faceted C3S grains grew extensively, whereas those of the spherical C2S grains grew rather slowly, relative to the matrix grains. As a consequence, C3S grains exhibited a bimodal size distribution that was typical of exaggerated grain growth, whereas C2S grains retained a uniform and normal size distribution. These results suggest that the growth of faceted C3S grains was controlled by the interface atomic attachment, such as two‐dimensional nucleation, and that of spherical C2S grains was controlled by diffusion through the liquid matrix. The dependence of growth mechanisms on grain morphology has been explained in terms of the atomistic structure of the solid/liquid interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.