Abstract
In this paper we present a new class of coarse-grained stochastic processes and Monte Carlo simulations, derived directly from microscopic lattice systems and describing mesoscopic length scales. As our primary example, we mainly focus on a microscopic spin-flip model for the adsorption and desorption of molecules between a surface adjacent to a gas phase, although a similar analysis carries over to other processes. The new model can capture large scale structures, while retaining microscopic information on intermolecular forces and particle fluctuations. The requirement of detailed balance is utilized as a systematic design principle to guarantee correct noise fluctuations for the coarse-grained model. We carry out a rigorous asymptotic analysis of the new system using techniques from large deviations and present detailed numerical comparisons of coarse-grained and microscopic Monte Carlo simulations. The coarse-grained stochastic algorithms provide large computational savings without increasing programming complexity or the CPU time per executed event compared to microscopic Monte Carlo simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.