Abstract

Simulating spatial dynamics in physics by Cellular Automata (CA) requires very large computation power, and, hence, CA simulation algorithms are to be implemented on multiprocessors. The preconceived opinion, that no much effort is required to obtain highly efficient coarse grained parallel CA algorithm, is not always true. In fact, a great variety of CA modifications coming into practical use need appropriate, sometimes sophisticated, methods of CA algorithms parallel implementation. Proceeding from the above a general approach to CA parallelization, based on domain decomposition correctness conditions, is formulated. Starting from the correctness conditions particular parallelization methods are developed for the main classes of CA simulation models: synchronous CA with multi-cell updating rules, asynchronous probabilistic CA, and CA compositions. Examples and experimental results are given for each case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.