Abstract
Ion-specific solvation has fundamental implications in biochemistry, and the thermodynamics and dynamics of aqueous salt solutions have correspondingly been investigated intensively. Nonetheless, there are fundamental unresolved issues in modeling the dynamics of aqueous salt solutions and the related problem of polymers dissolved in these solutions. In particular, experiments show that the self-diffusion coefficient, D, of water molecules in electrolyte solutions can be either enhanced or suppressed by particular salts having the same valence where the observed changes correlate with the Hofmeister series governing the relative solubility of proteins and water-soluble polymers in the same salt solutions. Recent studies have demonstrated that common atomistic models of aqueous electrolyte solutions completely fail to reproduce this basic phenomenon. Drawing on similar trends observed in the field of polymer nanocomposites, we propose a coarse-grained model of aqueous electrolyte solutions that captures the observed trends and that offers physical insight into the influence of salt on the thermodynamic and dynamic properties of electrolyte solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.