Abstract

This paper presents a new methodology for coarse-grained atomistic simulation of dislocation dynamics. The methodology combines an atomistic formulation of balance equations and a modified finite element method employing rhombohedral-shaped 3D solid elements suitable for fcc crystals. With significantly less degrees of freedom than that of a fully atomistic model and without additional constitutive rules to govern dislocation activities, this new coarse-graining (CG) method is shown to be able to reproduce key phenomena of dislocation dynamics for fcc crystals, including dislocation nucleation and migration, formation of stacking faults and Lomer–Cottrell locks, and splitting of stacking faults, all comparable with fully resolved molecular dynamics simulations. Using a uniform coarse mesh, the CG method is then applied to simulate an initially dislocation-free submicron-sized thin Cu sheet. The results show that the CG simulation has captured the nucleation and migration of large number of dislocations, formation of multiple stacking fault ribbons, and the occurrence of complex dislocation phenomena such as dislocation annihilation, cutting, and passing through the stacking faults. The distinctions of this method from existing coarse-graining or multiscale methods and its potential applications and limitations are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.