Abstract

Plain film X-ray scanners are indispensable for medical diagnostics and clinical procedures. This type of device typically produces two radiographic images of the human spine, including the anteroposterior and lateral views. However, these two photographs presented perspectives that were distinct. The proposed procedure consists of three fundamental steps. For automated cropping, the grayscale lumbar input image was initially projected vertically using its vertical pattern. Then, Delaunay triangulation was performed with the SURF features serving as the triangle nodes. The posture area of the vertebrae was calculated by utilizing the edge density of each node. The proposed method provided an automated estimation of the position of the human lumbar vertebrae, thereby decreasing the radiologist’s workload, computing time, and complexity in a variety of bone-clinical applications. Numerous applications can be supported by the results of the proposed method, including the segmentation of lumbar vertebrae pose, bone mineral density examination, and vertebral pose deformation. The proposed method can estimate the vertebral position with an accuracy of 80.32 percent, a recall rate of 85.37 percent, a precision rate of 82.36%, and a false-negative rate of 15.42 percent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call