Abstract

Image registration plays a crucial role in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), used as a fundamental step for the subsequent diagnosis of benign and malignant tumors. However, the registration process encounters significant challenges due to the substantial intensity changes observed among different time points, resulting from the injection of contrast agents. Furthermore, previous studies have often overlooked the alignment of small structures, such as tumors and vessels. In this work, we propose a novel DCE-MRI registration framework that can effectively align the DCE-MRI time series. Specifically, our DCE-MRI registration framework consists of two steps, i.e., a de-enhancement synthesis step and a coarse-to-fine registration step. In the de-enhancement synthesis step, a disentanglement network separates DCE-MRI images into a content component representing the anatomical structures and a style component indicating the presence or absence of contrast agents. This step generates synthetic images where the contrast agents are removed from the original images, alleviating the negative effects of intensity changes on the subsequent registration process. In the registration step, we utilize a coarse registration network followed by a refined registration network. These two networks facilitate the estimation of both the coarse and refined displacement vector fields (DVFs) in a pairwise and groupwise registration manner, respectively. In addition, to enhance the alignment accuracy for small structures, a voxel-wise constraint is further conducted by assessing the smoothness of the time-intensity curves (TICs). Experimental results on liver DCE-MRI demonstrate that our proposed method outperforms state-of-the-art approaches, offering more robust and accurate alignment results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.