Abstract

AbstractLeveraging multi‐platform laser scanning systems offers a complete solution for 3D modelling of large‐scale urban scenes. However, the spatial inconsistency of point clouds collected by heterogeneous platforms with different viewpoints presents challenges in achieving seamless fusion. To tackle this challenge, this paper proposes a coarse‐to‐fine adjustment for multi‐platform point cloud fusion. First, in the preprocessing stage, the bounding box of each point cloud block is employed to identify potential constraint association. Second, the proposed local optimisation facilitates preliminary pairwise alignment with these potential constraint relationships, and obtaining initial guess for a comprehensive global optimisation. At last, the proposed global optimisation incorporates all the local constraints for tightly coupled optimisation with raw point correspondences. We choose two study areas to conduct experiments. Study area 1 represents a fast road scene with a significant amount of vegetation, while study area 2 represents an urban scene with many buildings. Extensive experimental evaluations indicate the proposed method has increased the accuracy of study area 1 by 50.6% and the accuracy of study area 2 by 44.7%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.