Abstract

The formation of coarse Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn grains in Internal Tin (IT) strands has been studied at the example of a prototype strand with high Sn content. Metallographic examination revealed that the comparatively low critical current density (J <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> ) of this strand is partly due to the formation of a significant fraction of coarse grained Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn at the periphery of the individual filaments within the subelements. The phase evolution during the reaction heat treatment has been determined in situ by high energy synchrotron X-ray diffraction as well as ex situ by Energy Dispersive X-ray Spectroscopy in a Scanning Electron Microscope (SEM) in order to identify the conditions under which the coarse grains form. Similar to what is observed in the tubular type strands, Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn coarse grain formation occurs in the filament areas that had first been transformed into NbSn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> and Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">6</sub> Sn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</sub> , prior to Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn formation, and it accounts for an estimated <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Jc</i> reduction of roughly 20%. The amount of Cu-Nb-Sn and NbSn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> that is formed during the heat treatment can be reduced by increasing the temperature ramp rate, while the amount of Nb <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">6</sub> Sn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</sub> formed appears to be hardly influenced by the different heat treatments that have been tested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.