Abstract
A model reduction technique based on an optimization principle is employed to coarse-grain inviscid, incompressible fluid dynamics in two dimensions. In this reduction the spectrally-truncated vorticity equation defines the microdynamics, while the macroscopic state space consists of quasi-equilibrium trial probability densities on the microscopic phase space, which are parameterized by the means and variances of the low modes of the vorticity. A macroscopic path therefore represents a coarse-grained approximation to the evolution of a nonequilibrium ensemble of microscopic solutions. Closure in terms of the vector of resolved variables, namely, the means and variances of the low modes, is achieved by minimizing over all feasible paths the time integral of their mean-squared residual with respect to the Liouville equation. The equations governing the optimal path are deduced from Hamilton–Jacobi theory. The coarse-grained dynamics derived by this optimization technique contains a scale-dependent eddy viscosity, modified nonlinear interactions between the low mode means, and a nonlinear coupling between the mean and variance of each low mode. The predictive skill of this optimal closure is validated quantitatively by comparing it against direct numerical simulations. These tests show that good agreement is achieved without adjusting any closure parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.