Abstract
Here, we present a coarse-grained model targeted for implicit solvent simulations of unfolded or intrinsically disordered proteins. The hierarchical model with its nonspherical building blocks allows one to reproduce the local dynamics of the backbone with simple harmonic bonds and steric collisions between a small number of atoms at the correct off-center positions on the building blocks. Here in part 1, we also describe the implementation of the global shape of the protein chain and the extended local interactions that add a first secondary structure bias, which will subsequently be augmented by additional hydrophobic interactions, hydrogen bonds, and dipole dipole couplings along the backbone. Due to its hierarchical setup, the model has a near-atomistic resolution on the local scale and the overall numerical efficiency of a coarse-grained model such that even long protein chains can be simulated efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.