Abstract
Deep neural networks may achieve excellent performance in many research fields. However, many deep neural network models are over-parameterized. The computation of weight matrices often consumes a lot of time, which requires plenty of computing resources. In order to solve these problems, a novel block-based division method and a special coarse-grained block pruning strategy are proposed in this paper to simplify and compress the fully connected structure, and the pruned weight matrices with a blocky structure are then stored in the format of Block Sparse Row (BSR) to accelerate the calculation of the weight matrices. First, the weight matrices are divided into square sub-blocks based on spatial aggregation. Second, a coarse-grained block pruning procedure is utilized to scale down the model parameters. Finally, the BSR storage format, which is much more friendly to block sparse matrix storage and computation, is employed to store these pruned dense weight blocks to speed up the calculation. In the following experiments on MNIST and Fashion-MNIST datasets, the trend of accuracies with different pruning granularities and different sparsity is explored in order to analyze our method. The experimental results show that our coarse-grained block pruning method can compress the network and can reduce the computational cost without greatly degrading the classification accuracy. The experiment on the CIFAR-10 dataset shows that our block pruning strategy can combine well with the convolutional networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.