Abstract
We present a parallel algorithm for solving thenext element search problemon a set of line segments, using a BSP-like model referred to as thecoarse grained multicomputer(CGM). The algorithm requiresO(1) communication rounds (h-relations withh=O(n/p)),O((n/p)logn) local computation, andO((n/p)logp) memory per processor, assumingn/p⩾p. Our result implies solutions to the point location, trapezoidal decomposition, and polygon triangulation problems. A simplified version for axis-parallel segments requires onlyO(n/p) memory per processor, and we discuss an implementation of this version. As in a previous paper by Develliers and Fabri (Int. J. Comput. Geom. Appl.6(1996), 487–506), our algorithm is based on a distributed implementation of segment trees which are of sizeO(nlogn). This paper improves onop. cit.in several ways: (1) It studies the more general next element search problem which also solves, e.g., planar point location. (2) The algorithms require onlyO((n/p)logn) local computation instead ofO(logp*(n/p)logn). (3) The algorithms require onlyO((n/p)logp) local memory instead ofO((n/p)logn).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.