Abstract

Coarse-grained molecular dynamics simulation has been performed to study the aggregated morphology of the cationic surfactant, cetyltrimethylammonium bromide (CTAB), adsorbed on nanoscale graphene surfaces. The CTAB surfactants can self-assemble on graphene to form various supramolecular morphologies and structures. The effect of packing density, thickness of graphene sheet and width of graphene nanoribbon on the CTAB–graphene self-assembly has been investigated. The buoyant densities of various graphene–CTAB assemblies were calculated, which increase with surfactant coverage and number of graphene layers. This result demonstrates that density gradient can be used to isolate graphenes with various layers. This simulation provides larger-scale microscopic insight into the supramolecular self-assembly nanostructures for the CTAB surfactants aggregated on graphene, which could be valuable to guide fabrication of graphene-based hybrid nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.