Abstract

Bolapolyphiles constitute a versatile class of materials with a demonstrated potential to form a wide variety of complex ordered mesophases. In particular, cubic network phases (like the gyroid, primitive, and diamond phases) have been a target of many studies for their ability to create percolating 3D nanosized channels. In this study, molecular simulations are used to explore the phase behavior of bolapolyphiles containing a rigid rodlike core, associating hydrophilic core ends and a hydrophobic side chain with a multident architecture, i.e., where the branching pattern can vary from bident (two branches) to hexadent (six branches). Upon network phase formation, its skeleton is made up of "nodes" populated by the core ends and "struts" populated by the cores. It is shown that, by varying the side chain length, branching pattern, and attachment point to the core, one can alter the crowding around the cores and hence tune the nodal size and nodal valence (i.e., number of connecting struts) which lead to different types of network morphologies. For example, for a fixed total side chain length, having more branches generates a stronger crowding around the molecular core, driving them to form bundlelike domains with curvier interfaces that result in thinner struts. Also, attaching the lateral chain closer to one core end breaks the symmetry between the environments around the two core ends, leading to networks with bimodal nodal sizes. Importantly, since the characterization of (ordered or partially ordered) network phases is challenging given the potential incompatibilities between the simulation box size with the structure's space group periodic symmetry and the effect of morphological defects, a detailed framework is presented to analyze and fully characterize the unit cell parameters and structure factor of such systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call