Abstract

AbstractNanopore‐based devices are emerging as tools for single molecule manipulation, characterization and chemical analysis. Single or random arrays of chemically modified nanopores have been established as platforms for selective chemical and biosensing. However, it is little known about the orientation and behavior of surface tethered species in the nanopore environment as function of applied transpore voltages. In this study we report on coarse grained modeling of short (5‐, 15‐mer) DNA modified conical gold nanopores subjected to electrical field gradients of 5 and 50 mV/nm. An electromechanical gating effect in the single stranded DNA modified conical nanopores is predicted, which is due to the obstruction of the tip entrance by DNA strands oriented by the external electrical field. The magnitude of the rectification effect increases with increasing DNA length and decreasing tip diameter of the conical nanopore. The direction of on/off switching was found to be dependent on the location of the immobilized DNAs on the membrane supporting the nanopore.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.