Abstract

We study group actions on a coarse space and the induced actions on the Higson corona from a dynamical point of view. Our main theorem states that if an action of an abelian group on a proper metric space satisfies certain conditions, the induced action has a fixed point in the Higson corona. As a corollary, we deduce a coarse version of Brouwer’s fixed point theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.