Abstract
We prove that any separable II1 factor M admits a coarse decomposition over the hyperfinite II1 factor R—that is, there exists an embedding R↪M such that L2M⊖L2R is a multiple of the coarse Hilbert R-bimodule L2R⊗‾L2Rop. Equivalently, the von Neumann algebra generated by left and right multiplication by R on L2M⊖L2R is isomorphic to R⊗‾Rop. Moreover, if Q⊂M is an infinite-index irreducible subfactor, then R↪M can be constructed to be coarse with respect to Q as well. This implies the existence of maximal abelian ∗-subalgebras that are mixing, strongly malnormal, and with infinite multiplicity, in any given separable II1 factor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.