Abstract

The amplified CAD genes in N-(phosphonacetyl)-L-aspartate (PALA)-resistant Syrian hamster cells are located in an expanded chromosomal region emanating from the site of the wild-type gene at the tip of the short arm of chromosome B-9. The terminus of B-9 in PALA-sensitive cells contains a cluster of rRNA genes (i.e., a nucleolus organizer, rDNA). We have used a molecular clone containing sequences complementary to Syrian hamster 28S rRNA to investigate whether rDNA is coamplified with CAD genes in the PALA-resistant mutants. In situ hybridization of this probe to metaphase chromosomes demonstrates that rDNA and CAD genes do coamplify in two independently isolated PALA-resistant mutants. The tight linkage of CAD and rDNA genes was demonstrated by their coordinate translocation from B-9 to the end of the long arm of chromosome C-11 in one mutant. Blot hybridization studies substantiate the in situ hybridization results. Both types of analysis indicate that only one or two rDNA genes, on the average, are coamplified per CAD gene. The data are consistent with the model that unequal exchanges between rDNA genes mediate the amplification of CAD genes in the Syrian hamster mutants that were analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.