Abstract

To take advantage of the multiuser diversity resulted from the variation in channel conditions among the users, it has become an interesting and challenging problem to efficiently allocate the resources such as subcarriers, bits, and power. Most of current research concentrates on solving the resource-allocation problem for all users together in a centralized way, which brings about high computational complexity and makes it impractical for real system. Therefore, a coalitional game framework for downlink multi-user resource allocation in long term evolution (LTE) system is proposed, based on the divide-and-conquer idea. The goal is to maximize the overall system data rate under the constraints of each user's minimal rate requirement and maximal transmit power of base station while considering the fairness among users. In this framework, a coalitional formation algorithm is proposed to achieve optimal coalition formation and a two-user bargaining algorithm is designed to bargain channel assignment between two users. The total computational complexity is greatly reduced in comparison with conventional methods. The simulation results show that the proposed algorithms acquire a good tradeoff between the overall system throughout and fairness, compared to maximal rate and max-min schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.