Abstract

Benefitting from the coalescence-induced droplet jumping on superhydrophobic surfaces, the condensing droplets on heat exchangers can be removed efficiently, significantly improving the condensation heat-transfer performance of various thermal applications. However, the enhancement of droplet jumping height and self-removal to further improve the condensation heat-transfer performance of the thermal applications remains a challenge due to considerable interfacial adhesion caused by the inevitable partial-Wenzel state condensing droplets on superhydrophobic surfaces. In this study, a biphilic nanostructure is developed to effectively improve the droplet jumping height by decreasing the interfacial adhesion with the formation of Cassie-like droplets. Under atmospheric conditions, ∼28% improvement of droplet jumping height is achieved on a biphilic surface compared to that of a superhydrophobic surface. Additionally, the droplet contact electrification on biphilic surfaces discovered in this work allows the droplets to jump ∼137% higher compared with that under atmospheric conditions. Furthermore, the droplet jumping and electrification mechanisms on the biphilic surface are revealed by building a theoretical model that can predict the experimental results well. Apart from being a milestone for the droplet jumping physics development on biphilic nanostructures, this work also provides new insights into the micro-droplet discipline.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.