Abstract
The coalescence of magnetic islands in the low-resistivity eta, Hall-MHD regime is studied. The interaction between the ion inertial length d(i) and the dynamically evolving current sheet scale length deltaJ is established. Initially, d(i) << deltaJ. If eta is such that deltaJ dynamically thins down to d(i) prior to the well-known sloshing phenomena, then sloshing is avoided. This results in eta independent peak reconnection rates. However, if d(i) is small enough that deltaJ cannot be thinned down to this scale prior to sloshing, then sloshing proceeds as in the resistive MHD model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.