Abstract

Liquid-liquid phase separation plays a prominent role in the physics of life, providing the cells with various membrane-less compartments. These structures exhibit a range of material properties that, in many cases, change over time. Inspired by this, we investigate here an aqueous two-phase system formed by mixing polyethylene glycol with dextran. We modulate the material properties of the resulting dextran droplets by adding DNA that readily enters the droplets. We find a non-monotonic dependence of the physical properties of the droplets under the imposed ionic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.