Abstract

Droplet transport on a cylindrical wire has applications in numerous fields such as fog collection, mist elimination, filtration, and oil/water separation. This work reports a droplet transport phenomenon on a superhydrophilic wire that shows a transient velocity powered not by the gradient of substrate geometry or wettability but primarily by the surface-to-kinetic energy transition that occurs along the axial direction upon coalescence. The transition efficiency is mainly limited by the viscous friction at the local liquid wedge, a relationship that a modified Ohnesorge number can capture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.