Abstract

We studied the separation process in the ternary mixtures of nonionic surfactant (C(12)E(6), hexaethylene glycol monododecyl ether), polymer (PEG = poly(ethylene glycol)), and water. The separation process of PEG/water rich domains from the surfactant rich matrix was observed by the optical microscopy. From the morphological analysis, we determined the size of the domains as a function of time. On this basis we identified a dominating mechanisms of domains growth, that is the coalescence-induced coalescence mechanism. The coalescence (collision) event of two droplets induces a flow or a change of concentration distribution around droplets which pushes other droplets together inducing further growth. We also observed the evaporation-condensation (Lifshitz-Slyozov) mechanism of growth, but it did not affect the growth of large domains appreciably. We determined two regimes of the coalescence-induced coalescence associated with the dimensionality of the system. When the domains were smaller or comparable in size to the sample thickness we observe a three-dimensional growth. When the domains became larger than the sample thickness, a two-dimensional growth was observed. In the first regime, the size of the domains, L(t), grew linearly with t, while in the second regime, L(t) approximately t(0.3). In the binary, surfactant/water system, water domains grew by the geometrical coalescence-induced coalescence as L(t) approximately t in three dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.