Abstract

Coalescence between oil caps with irreversibly adsorbed layers of nonionic surfactant is characterized in deionized water and electrolyte solution. The coalescence is characterized using a modified capillary tensiometer allowing for accurate measurement of the coalescence time. Results suggest two types of coalescence behavior, fast coalescence at low surface coverages that are independent of ionic strength and slow coalescence at high coverage. These slow coalescence events (orders of magnitude slower) are argued to be due to electric double layer forces or more complicated stabilization mechanisms arising from interfacial deformation and surface forces. A simple film drainage model is used in combination with measured values for interfacial properties to quantify the interaction potential between the two interfaces. Since this approach allows the two caps to have the same history, interfacial coverage and curvature, the results offer a tool to better understand a mechanism that is important to emulsion stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call