Abstract

Molecular dynamics (MD) simulations are performed to investigate the coalescence of the liquid Al and Pb drops in the graphene (G) walls and pillared-graphene (PG) walls. The confining walls can affect the coalescence dynamics of two adjacent films by restricting the movement of one of the metal drops; however, the coalescence behavior is different in the G-walls and the PG-walls. Two un-contacted films can still merge into one bigger drop because of the restricting effect of the walls, in which the movement of the Pb drop plays a predominant role. The coalescence time decreases with the decrease of the confining space. Our findings demonstrate that the coalescence dynamics can be controlled by tuning the confining space or wall surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call