Abstract

We consider finite-state, discrete-time, mixing Markov chains \((V,P)\), where \(V\) is the state space and \(P\) is the transition matrix. To each such chain \((V,P)\), we associate a sequence of chains \((V_n,P_n)\) by coding trajectories of \((V,P)\) according to their overlapping \(n\)-blocks. The chain \((V_n,P_n)\), called the \(n\)-block Markov chain associated with \((V,P)\), may be considered an alternate version of \((V,P)\) having memory of length \(n\). Along such a sequence of chains, we characterize the asymptotic behavior of coalescence times and meeting times as \(n\) tends to infinity. In particular, we define an algebraic quantity \(L(V,P)\) depending only on \((V,P)\), and we show that if the coalescence time on \((V_n,P_n)\) is denoted by \(C_n\), then the quantity \(\frac{1}{n} \log C_n\) converges in probability to \(L(V,P)\) with exponential rate. Furthermore, we fully characterize the relationship between \(L(V,P)\) and the entropy of \((V,P)\).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.