Abstract

Coal–gangue sorting is a vital component of intelligent mine construction. As intelligent manufacturing continued to advance, data-driven coal–gangue recognition emerged as a prominent research topic. However, conventional data-driven methods for coal–gangue recognition heavily rely on expert-extracted features. The process of feature extraction is labor-intensive and significantly impacts the final outcome. Deep learning (DL) offers an effective approach to automatically extract features from raw data. Among the various DL techniques, convolutional neural networks (CNNs) have proven to be particularly effective. In this paper, we propose an intelligent method for recognizing coal–rock by fusing multiple preprocessing techniques applied to near-infrared spectra and employing dual attention. Initially, a signal-to-RGB image conversion method is applied to fuse three types of preprocessing data, namely first-order differential, second-order differential, and standard normal transform, into an RGB image representation. Subsequently, we propose a neural network model (CBAM-VIT) that integrates the convolutional block attention mechanism (CBAM) and Vision Transformer (VIT). When evaluated on the coal–rock dataset, this model achieves an accuracy of 98.5%, surpassing the performance of VIT (95.3%), VGG-16 (89%), and AlexNet (82%). The comparative results clearly demonstrate that the proposed coal–gangue recognition method yields significant improvements in classification outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call