Abstract

Solid oxide fuel cells (SOFCs) transform the energy of the fuel instantly into electric energy with a large fuel option. Coal, which is a local energy source, is a preferred fuel despite its negative features because it is cheap and abundant. The use of coal and coal-based fuels in SOFCs has recently attracted considerable attention. In this study, performance analysis of the SOFC has been performed experimentally by using hydrogen, generator gas (contained 12% H2), and water-gas (contained 50% H2) in an electrolyte-supported SOFC (ES-SOFC). The numerical modelling of the fuel cell had been previously performed. In addition, the effect of inlet gas fuel flow rates on the ES- SOFC has been investigated numerically in this study. The temperature effect on the performance of ES-SOFC has been examined experimentally. It is seen that the performance of SOFCs fueled hydrogen is favorable than fueled water gas and generator gas. This is because of the higher hydrogen substance in the water gas measure against the other gas. In addition, it is seen that the increase in temperature increases the performance with positive effects on the reactions. It is also concluded that the performance of SOFC increases when inlet fuel flow rates increase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.