Abstract
Poor CO2 capture stability and serious elutriation are the issues commonly occur when limestone circulating in the fluidized bed-based Calcium Looping (CaL) system. Hence, three types of coal fly ash-bound (CFA-bound) limestone-derived sorbents were synthesized via mixing the limestone, calcined lime and hydrated lime with coal fly ash, respectively. The generated ternary Ca-Al-O and Ca-Si-O phases offer structural stability for CFA-bound limestone-derived sorbents and improve their cyclic CO2 capture performance. Moreover, extrusion-spheronization method was adopted to produce CFA-bound limestone and hydrated lime sorbent pellets to synergistically enhance cyclic CO2 capture capability and mechanical properties. It is found that hydrated lime is superior to limestone as the calcium precursor to prepare CaO-based sorbent pellets due to its desirable pore structure and high binding force. Therefore, the CFA-bound hydrated lime pellets containing 15 wt % of fly ash (HL/CFA15-P) exhibits a high carbonation conversion of 40 % after 17 cycles, which is nearly 1.4 times that of limestone pellets. The discrepancy on carbonation conversion between the two sorbent pellets is enlarged to ∼1.6 times after 100 cycles, which is calculated using a semi-empirical equation. Moreover, HL/CFA15-P exhibits outstanding mechanical property, whose compressive strength reaches 6±1.7 MPa, which is comparable to the cement-bound CaO-based sorbent pellets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.