Abstract
Coal chemical reverse osmosis concentrate (ROC), which is characterized by high salinity and high organics, remains as a serious environmental problem. In this study, a lab-scale three-stage membrane-aerated biofilm reactor (MABR) system was designed to treat such a ROC. The effects of influent salinity and operating parameters (pH, DO and HRT) on the treatment efficiency were discussed. The removal efficiencies of COD, NH4-N and TN under the optimal operating parameters reached to 81.01%, 92.31% and 70.72%, respectively. Simultaneous nitrification and denitrification (SND) as well as shortcut nitrogen removal were achieved. The salinity less than 3% did not induce significant decrease in treatment efficiency and microbial communities. Moreover, the dominant phyla in biofilms were Proteobacteria and Bacteroidetes. This work demonstrated MABR had great potential in ROC treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.