Abstract
Suspended solids and residual oil removal in a liquid are relevant to numerous research areas and industry. The suspended solid cannot be removed completely by plain settling. Large and heavy particles can settle out readily, but smaller and lighter particles settle very slowly or in some cases do not settle at all. Because of this, it requires efficient physical-chemical pretreatment methods. Our current research is to study the pretreatment methods in the removal of suspended solids and residual oil content in POME. Preliminary analysis shows that POME contains 40,000 mg/L suspended solid and 4,000 mg/L oil and grease content that relatively very high compared to the maximum allowable limit by the Malaysian Department of Environment which are only 400 mg/L and 50 mg/L respectively. The methods chosen were coagulation-sedimentation method for suspended solids removal and solvent extraction for residual oil removal. Jar test apparatus was used as the standard procedure for bench-scale testing and alum was used as the coagulant. Parameters studied were alum dosage, mixing time, mixing speed, sedimentation time and pH. For removal of residual oil, six different organic solvents; n-hexane, n-heptane, benzene, petroleum ether, pentane and petroleum benzene were used. For every solvent the effect of solvent ratio, mixing time, mixing speed and pH were analyzed. The results show that the optimum conditions in removal of suspended solid from POME were at pH 4.11, sedimentation time of 100 minutes and 150 rpm mixing speed with 1.5 hr mixing time. N-hexane give the best performance in extracting residual oil from POME with solvent to POME ratio of 6:10. It was estimated about 0.54 grams of oil and grease can be extracted with optimum variables at pH 4, mixing speed of 200 rpm, and 20 minutes mixing time. Key Words: palm oil mill effluent, coagulation, suspended solid, residual oil, solvent extraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.