Abstract

We consider the classical Smoluchowski coagulation equation with a general frequency kernel. We show that there exists a natural deterministic solution expansion in the non-associative algebra generated by the convolution product of the coalescence term. The non-associative solution expansion is equivalently represented by binary trees. We demonstrate that the existence of such solutions corresponds to establishing the compatibility of two binary-tree generating procedures, by: (i) grafting together the roots of all pairs of order-compatible trees at preceding orders, or (ii) attaching binary branches to all free branches of trees at the previous order. We then show that the solution represents a linearised flow, and also establish a new numerical simulation method based on truncation of the solution tree expansion and approximating the integral terms at each order by fast Fourier transform. In particular, for general separable frequency kernels, the complexity of the method is linear-loglinear in the number of spatial modes/nodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.