Abstract

Since the discovery of polyphenolic underwater adhesion in marine mussels, researchers strive to emulate this natural phenomenon in the development of adhesive hemostatic materials. In this study, bio-inspired hemostatic materials that lead to pseudo-active blood coagulation, utilizing traditionally passive polymer matrices of chitosan and gelatin are developed. The two-layer configuration, consisting of a thin, blood-clotting catechol-conjugated chitosan (CHI-C)layer and a thick, barrier-functioning gelatin (Geln) ad-layer, maximizes hemostatic capability and usability. The unique combination of coagulant protein-free condition with CHI-C showcases not only coagulopathy-independent blood clotting properties (efficacy) but also exceptional clinical potential, meeting all necessary biocompatibility evaluation (safety) without inclusion of conventional coagulation triggering proteins such as thrombin or fibrinogen. As a result, the CHI-C/Geln is approved by the Ministry of Food and Drug Safety (MFDS, Republic of Korea) as a class II medical device. Hemostatic efficacy observed in multiple animal models further demonstrates the superiority of CHI-C/Geln sponges in achieving quick hemostasis compared to standard treatments. This study not only enriches the growing body of research on mussel-inspired materials but also emphasizes the potential of biomimicry in developing advanced medical materials, contributing a promising avenue toward development of readily accessible and affordable hemostatic materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call