Abstract
Single solute adsorption and coadsorption of As(III) and As(V) onto hydrous ferric oxide (HFO), oxidation of As(III), and extraction efficiencies were measured in 0.2 atm O2. Oxidation was negligible for single-adsorbate experiments, but significant oxidation was observed in the presence of As(V) and HFO. Single-adsorbate As(III) or As(V) were incompletely extracted (0.5 M NaOH for 20 min), but all As was recovered in coadsorbate experiments. Single-adsorbate data were well-simulated using published surface complexation models, but those models (calibrated for single-adsorbate results) provided poor fits for coadsorbate experiments. An amended model accurately simulated single- and coadsorbate results. Model predictions of significant change in As(III) surface complex speciation in coadsorbate experiments was confirmed using zeta potential measurements. Our results demonstrate that mobility of arsenic in groundwater and removal in engineered treatment systems are more complicated when both As(III) and As(V) are present than anticipated based on single-adsorbate experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.